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ABSTRACT
Learning curves have proven to be a useful tool for under-
standing how a student learns a given skill as they progress
through a curriculum. A learning curve for a given Knowl-
edge Component (KC) is a plot of some measure of compe-
tence as a function of the number of opportunities the stu-
dent has had to apply that KC. Consider the case where each
problem-solving step is recorded by, for instance, by an in-
telligent tutoring system. In this case, one normally assigns a
unique KC to each problem-solving step and the construction
of the associated learning curves is straightforward. On the
other hand, many online homework systems only evaluate the
student’s final answer to a problem. In that case, the student
has generally applied a number of KCs to find the answer and
their performance on the problem is some composite of their
mastery of all of the requisite KCs. In this paper, we propose
a simple method for generating learning curves for multiple-
KC problems that is independent of any particular theory of
learning. In the case where there is only one KC per prob-
lem, the method reduces to the ordinary learning curves. We
demonstrate this method using a set of artificially generated
student data.
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INTRODUCTION
The increased use of online homework systems and intelli-
gent tutor systems (ITS) means that ever-increasing amounts
of student log data is available for analysis. This data can be
used to answer two important questions: what skills are stu-
dents learning and how quickly are they learning them? To be
more precise, we can equate skills with Knowledge compo-
nents (KCs): small bits of information needed to solve a prob-
lem [11, 3]. KCs generally have some sort of pre-requisite
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relations: For example, you cannot apply the area of a cir-
cle formula A = πr2 unless you first know the definition
of “radius of a circle.” However, aside from prerequisites, a
KC can, by definition, be mastered independently from other
KCs. This definition assumes that KCs are context indepen-
dent. That is, the student’s ability to apply that KC correctly
or quickly does not depend on the particular problem the stu-
dent is solving or the other KCs needed to solve that problem.

Since KCs are defined to have these properties, then it re-
mains to be seen whether, and in what cases, they are a use-
ful description of skill acquisition. One way to determine
how well the KC picture is working is to examine the as-
sociated learning curves. If the curves are smooth, increas-
ing/decreasing monotonically (depending on the measure of
competence), and independent of context, then the KC picture
is working.

Learning curves are a plot of some measure of mastery of a
skill as a function of the number of opportunities that the stu-
dent has had to apply that skill. Possible measures of mastery
include:

• number of errors made before correctly applying the KC,

• time taken to correctly apply a KC,

• “assistance score,” number of errors plus number of re-
quests for help before completing a step, and

• “correctness”, whether the student applied the KC cor-
rectly without any preceding errors or requests for help.

In the following, we will use “correctness” as our measure of
competence for a given skill.

In a typical Intelligent Tutoring System (ITS), the student en-
ters each problem-solving step into the tutor system. It is
natural, in that case, to associate one KC with each student
input and it is relatively straightforward to construct the as-
sociated learning curves. However, many online homework
systems only require the student to enter their final answer to
a problems into the system. In this case, a single input is the
entire problem and it is natural to associate multiple KCs to
each student input.

If multiple KCs are associated with a single input, then the
construction of learning curves is more difficult. If the stu-
dent gets the problem wrong, which KC is responsible? This
is sometimes called the “assignment of blame problem” [7,
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Table 1. List of definitions and quantities

k, l, m: label representing a KC.

t, u, v: label representing opportunity number for some KC.

p: label representing an exercise.

s: the student.

Pt,k is a model parameter representing the probability that a
student will apply KC k correctly on opportunity t. Pt,k ∈
[0, 1].

ξs,p is the model-given probability that student s will get
problem p correct.

Ct,k is the number of students in the dataset who correctly
applied KC k on opportunity t.

I (t,k) is the number of students who got a an exercise
containing KCs k = {k1, k2, . . .} incorrect where t =
(t1, t2, . . .) is a vector of corresponding opportunities. This
exercise represents opportunity ta for the student to apply
KC ka.

Ts,p is the set of KC, opportunity pairs such that problem p
is opportunity t for student s to apply KC k.

6, 5]. In the following, a simple method is proposed which
addresses the assignment of blame problem while making a
minimum of theoretical assumptions, allowing one to con-
struct learning curves for exercises with multiple KCs. Our
strategy is to introduce a model where every point on each
learning curve is identified as a model parameter. These
model parameters, and their associated errors, are then de-
termined by a maximum likelihood fit to student log data. In
the case of a single KC per problem/step, this reduces to the
usual learning curves.

LEARNING CURVE MODEL
A number of studies have addressed the multiple-KC problem
in the context of some model of learning, such as Bayesian
Knowledge Tracing or Performance Factor Analysis [2, 4].
In the present work, our goal is simply to construct learning
curves using a minimum number of model assumptions. Note
that conventional learning curves themselves make two major
assumptions:

1. They average over students. This corresponds to a model
that does not have any student-specific parameters.

2. They ignore the problem context. This corresponds to a
model that does not have any problem-specific parameters.

In fact, the construction of a learning curve is equivalent to
fitting the student log data to a model containing a parameter
representing each KC and step. In other words, if I define
Pt,k as the probability that a student will correctly apply KC
k at opportunity t, and determine Pt,k by fitting to the student
log data, then plotting of Pt,k versus t is a learning curve for
KC k.

This gives us a way forward in the multiple-KC case. We
define a model having parameters {Pt,k}. The associated log-
likelihood is

log (L) =
∑

s,p∈Cs
log (ξs,p) +

∑

s,p∈Is
log (1− ξs,p) (1)

where s is the student, p is the problem, Cs is the set of prob-
lems s got correct, and Is is the set of problems s got incor-
rect. Also, ξs,p is the model-given probability that student s
will get problem p correct.

We will assume that the student must apply all of the asso-
ciated KCs to solve a given exercise correctly. This is some-
times called a “conjunctive model” and is a good approach
for typical K-12 math exercises [8]. This means that the total
probability of success is the product of the KC probabilities:

ξs,p =
∏

t,k∈Ts,p
Pt,k (2)

where Ts,p is the set of KCs and opportunities such that prob-
lem p is opportunity t for student s to apply KC k.

To construct Ts,p, one needs a list of KCs associated with each
exercise p, sometimes referred to as the “Q-matrix” [10]. In
this discussion, we will assume that the Q-matrix is known,
perhaps determined by the problem author or a domain ex-
pert.

Numerical Calculation
The likelihood given by Eqn. (1) is rather inconvenient for
large numerical calculations. Instead, we will introduce vari-
ables that aggregate over student and exercise. Define Ct,k

to be the number of students in the dataset who correctly ap-
plied KC k on opportunity t. Likewise, define I (t,k) to be
the number of students who got a an exercise containing KCs
k = {k1, k2, . . .} incorrect where t is a vector of associated
opportunities. This exercise represents opportunity ta for the
student to apply KC ka. Then, the log-likelihood can be writ-
ten as

log (L) =
∑

t,k

Ct,k log (Pt,k)+
∑

t,k

I (t,k) log (1− Γ (t,k))

(3)
where Γ (t,k) is the probability that a student with opportu-
nity vector t will have success on a problem containing KCs
k = {k1, k2, . . .}. Following Eqn. (2), Γ (t,k) is a product
over the associated probabilities:

Γ (t,k) =
∏

a

Pta,ka
. (4)

Note that the first term of Eqn. (3) has a much simpler form
than the second term. This is due to our use of a conjunctive
model. If a student gets an exercise “correct” then we know
without ambiguity that they applied all of the associated KCs
correctly. However, if they get a problem wrong, then it is not
clear which KC is to blame and the associated probabilities
must be considered jointly.

Let {P̂t,k} be the model parameters at the maximum like-
lihood point. {P̂t,k} can be found numerically by maxi-
mizing the log-likelihood, Eqn. (3) subject to the constraints
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Table 2. KC content of the artificial homework set. Students completed
the first eight problems in the given order and the remaining problems
in random order; they completed between 15 and 20 problems total.

1 2 3 4 5 6 7 8 9 10
A A A A B B B B A B

11 12 13 14 15 16 17 18 19 20
A B AB AB AB AB AB AB AB AB

0 ≤ Pt,k ≤ 1. For convenience, the Mathematica func-
tion FindMaximum, was used to calculate the maximum of
log (L). However, any optimization algorithm that enforces
constraints and uses information about the gradient of the
function should work as well.

Error analysis
It is important to calculate the standard errors associated with
the model parameters. Unlike the single KC per problem
case, the model parameters may be strongly correlated and
the errors can have unexpected values. In addition, the error
analysis can elucidate any cases where the model parameter
cannot be determined from the data (we will discuss this fur-
ther in the conclusion).

Before finding the errors, we need to examine the the max-
iumum likelihood point and identify any parameters that lie
on the boundaries P̂t,k = 0 or 1. The likelihood function L
is not stationary in these parameters at the maximum likeli-
hood point, so the error analysis cannot be applied to them;
they should be not be included in the Hessian matrix below,
Eqn (5). In practice, this should not a significant issue, since
P̂t,k = 0 or 1 typically occurs when there are just a few stu-
dent problem-solving instances for a given t and k.

For a maximum likelihood fit, the standard errors associated
with the model parameters can determined using the follow-
ing procedure [1, 9]. First, we find the Hessian matrix asso-
ciated with Pt,k = P̂t,k. The matrix elements of the Hessian
are given by

∂2 log (L)

∂Pt,k∂Pu,l

∣∣∣∣
Pv,m=P̂v,m

=

− 1

P̂t,kP̂u,l

∑

t,k

I (t,k) Γ (t,k)

(1− Γ (t,k))
2

∣∣∣∣∣
Pv,m=P̂v,m

. (5)

To find the standard error associated with each of the model
parameters P̂t,k, we invert the negative of the Hessian ma-
trix and take the square root of the diagonal elements. If this
process fails (the Hessian matrix is singular), it is a signal
that some of the model parameters cannot be uniquely de-
termined from the given log data. Similarly, if the Hessian
matrix is nearly singular, then the associated standard errors
will be very large. This will single out any model parameters
that cannot be determined from the data.
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Figure 1. Learning curve for the artificial homework set where we as-
sume each problem has the same single KC. Note the jump after oppor-
tunity 4 due to the fact that the first four and second four problems have
different KCs.
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Figure 2. Learning curve for KC A. The solid line is the model used to
generate the student data and the points with error bars represent the
learning curve determined from the student data using our procedure.
Note that the error bars for the last few opportunities are larger, due to
student attrition.

APPLICATION TO STUDENT DATA
To illustrate how this model works, we will generate an ar-
tificial student performance dataset. Consider a homework
assignment of 20 problems that exercise two KCs, A and
B as detailed in Table 2. We assume that students progress
through the first 8 problems in the given order, but solve the
remaining 12 problems in random order, completing between
15 and 20 problems. We assume that student mastery for the
KCs is given by the functions Pt,A = 0.9 − 0.85e−0.3t and
Pt,B = 0.85 − 0.45e−0.1t; see Figures 2 and 3. We use this
model to generate a set of outcomes, Cs, Is, and Ts,p, for 100
students.

If we ignore the KC content of the problems, we can plot a
naı̈ve learning curve for this student data; See Fig. 1. We
see a discontinuity at t = 4 due to the change in actual KC
content of the problems. The last problems are more difficult,
since they involve two skills and so the student performance
on them is suppressed.

Next, we use our procedure to generate learning curves and
associated errors for this dataset. The results are plotted in
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Figure 3. Learning curve for KC B. The high value at t = 5 is a sta-
tistical fluctuation: as we iincrease the number of students, the model
parameters will converge to the solid line.

Figs. 2 and 3. As expected, they agree well with the model
used to generate the student data. This shows that our method
is working. Note that the error bars can vary considerably
from point to point.

CONCLUSION
The primary goal of the approach developed here is to plot
learning curves for cases where there are problems (or prob-
lem steps) involving multiple KCs. In practice, we find our
method to be numerically robust (no problems with local
maxima).

However, there is one case where it may fail: if there is a
KC that always appears along with another KC for several
problems and all the students in the dataset solve nearly the
same ordered sequence of problems, then there is no way dis-
tinguish between the two KCs for one or more value of t.
This will result in a Hessian matrix that is not positive-definite
and the matrix inversion will fail. We believe that this situa-
tion will rarely arise in practice, since most datasets involve
students in multiple courses, and students are generally not
forced to solve problems in a specific order.

In this work, we focused on a “conjunctive model” for com-
bining KCs, as this is likely the most appropriate model for
typical math and science exercises. Although the basic strat-
egy we present here could be applied to other models (dis-
junctive, compensatory) for combining KCs, the details of the
associated numerical calculation would look rather different.

Obviously, the next step is to apply this approach to real stu-
dent data. This would require a set of exercises that have
been tagged with multiple KCs, where the mix of KCs vary
significantly from exercise to exercise. In addition, the stu-
dent activity would have to fairly heterogeneous, with differ-
ent students taking different paths through the exercises.
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